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Summary

Several different approaches are described to the problem of synthesising the pluck response of a guitar, starting

from information about string properties and the input admittance at the bridge of the guitar. Synthesis can be
carried out in the frequency domain, the time domain, or via modal superposition. Within these categories there
are further options. A range of methods is developed and implemented, and their performance on a particular test
case compared. The two most successful methods are found to be modal synthesis using the first-order method,
and frequency-domain synthesis. Of the two, frequency domain synthesis proves to be faster. A significant con-

clusion is that the coupled string/body modes of a normal classical guitar do not show “veering” behaviour except
at low frequencies, so that it is important to use a synthesis method which incorporates fully the effect of string
damping: methods based on first finding undamped modes give poor results.

PACS no. 43.40.Cw, 43.75.Gh

1. Introduction

On the face of it, vibrational analysis of the guitar is rather
simple. When a guitar string is plucked the player cre-
ates certain initial conditions of displacement and velocity
in the string and the guitar body, then releases the string
so that they vibrate freely. Provided the motion is small
enough for linear theory to apply, the resulting vibration
and sound radiation is given simply by a superposition of
the transient responses of the various coupled string/body
modes of the instrument. (“Body” is used here to include
the effect of the air within the cavity and outside.) The
player can, to a certain extent, control the amplitudes mak-
ing up the modal mixture, but the frequency, decay rate and
radiation behaviour of each mode are governed by the in-
strument’s construction and stringing, and the player can
only exert a very minor influence on them for musical ef-
fect.

Somewhere in the details of these transient decaying
sounds lies the information which determines perceptual
judgements: discrimination and quality rating between
instruments, and the musical “palette” available to the
player. It is not clear precisely which features of these tran-
sients have audible consequences: it is likely that in the
context of musical performance, rather subtle effects may
sometimes matter. In pursuit of the goal of relating musi-
cal qualities to the constructional details of an instrument
it is necessary to develop theoretical models of the system,
and to be useful such models must be capable of achieving
an accurate match to the observed physical behaviour of
an instrument. In this paper, various possible approaches
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to the synthesis of plucked-string transients are examined,
and in a companion paper [1] the predictions are compared
with measurements.

The vibration of an ideal stretched string is treated in ev-
ery vibration textbook, and the specific behaviour of mu-
sical strings has also been researched extensively (see for
example [2, 3, 4]). Similarly, many measurements have
been published of the vibration behaviour of guitar and vi-
olin bodies (see for example [2, 5]). It seems remarkable,
therefore, that there is no published work which explores
all the issues of putting the two together to give a fully
detailed method to synthesise the coupled string/body vi-
bration from the separate knowledge of string and body
behaviour. Parts of the problem have been tackled, cer-
tainly. A thorough and insightful treatment has been given
by Gough [6] of the coupling of one string overtone to one
mode of an instrument body. The specific coupled vibra-
tion problem of the cello’s wolf note has been discussed by
several authors (e.g. Schelleng [7]). In a very recent study,
Derveaux et al. [8] have presented numerical simulations
which include a string, an idealised guitar body and the
surrounding air. There is also an extensive literature on the
general problem of computational methods for vibration
analysis of complex structures, including methods based
on assembling the behaviour of a complete system from
results for separate subsystems (see for example [9]).

However, none of these treatments entirely addresses
the problem of synthesis of the transient response to a
pluck over the full frequency range of interest for musi-
cal applications. That is the task of this paper, and the
attempt to solve it and to compare the results with mea-
surements will reveal some surprising subtleties. Many of
these are associated in one way or another with the correct
treatment of vibration damping: after all, one of the major
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criteria for a successful synthesis method is that it should
give good predictions of decay rates. These vary strongly
with frequency, and reproducing this pattern by synthesis
is a challenging problem.

It should be emphasised that the objective here is to
develop synthesis methods which are physically accurate
in the sense of matching in as much detail as possible
the measured behaviour of real guitars. The purpose of
the models is primarily to address questions of interest to
acoustical guitar makers and players, so that it is important
to keep a clear link between physical parameters of the
instrument and the parameters of the model. This results
in significantly different priorities to work which is con-
cerned with designing synthesis algorithms for real-time
musical performance (see for example [10]). The empha-
sis there is inevitably on making such simplifications as
are possible without sacrificing too much in sound quality,
in the interests of speed. The approach taken here is to de-
fer questions about auditory consequences until the model
has been demonstrated “complete” by laboratory measure-
ments. It will then be possible to proceed by subtraction,
suppressing details of the model and assessing by listen-
ing tests whether the change is significant to a listener or
player of the guitar.

It is worth noting the complexity of the synthesis task.
The radiated sound from a typical note on a classical gui-
tar shows clear spectral peaks up to at least 5 kHz. This
gives a useful target frequency range for synthesis. It cor-
responds to about the 60th harmonic of the lowest note on
a normal guitar (82 Hz). Each of these isolated string “har-
monics” can appear in two polarisations. A typical guitar
body structure has of the order of 250 vibration modes in
this range (plus a roughly comparable number of modes of
the internal air cavity [11]). Assembling these numbers, it
is clear that an accurate synthesis method may have to ac-
count correctly for several hundred degrees of freedom. It
may come as a surprise to learn that very few vibration pre-
dictions of this degree of complexity have ever been con-
firmed in detail by experiment. Although very large Finite-
Element models are routinely used for vibration prediction
of industrial structures of many kinds, where these have
been checked against measurements they rarely give full
agreement in detail beyond the first few modes (although
qualitative and statistical aspects of the predictions may
work to higher frequencies). Not for the first time, musical
acoustics is “pushing the envelope” of vibration analysis.

2. Overview of synthesis methods

2.1. Characterising string and body

There is a wide variety of possible approaches to synthesis.
Before going into details, it is useful to review these meth-
ods in outline and note their potential strengths and weak-
nesses. All methods start from the same basic information.
The string is characterised by a small number of funda-
mental physical properties: tension, mass per unit length,
bending stiffness and damping. Other relevant properties,
such as wave speed and characteristic impedance, follow
from these. Symbolically, the string will be assumed to
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have length L, tension 7', mass per unit length p and bend-
ing rigidity B. (For a homogeneous solid string of radius
a and Young’s modulus E, B = E7ra4/4.) In the sim-
plest case, the string undergoes transverse vibration in a
single plane normal to the guitar’s soundboard, with trans-
verse displacement y(x, t) at position  and time ¢. At one
end, x = 0 say, the string is assumed for the moment to
be rigidly anchored so that it has no displacement. At the
other end, x = L, it is attached to the body of the gui-
tar so that string and body have identical displacements. If
string vibration with both polarisations is included, trans-
verse displacement z(x,t) will be assumed in the plane
parallel to the guitar’s soundboard.

For the body, the most direct characterisation of dy-
namic behaviour is via the input admittance at the point
on the bridge where the string makes contact, or more
generally via the admittance matrix at this point. We may
choose to process this admittance to extract modal proper-
ties: each mode has an effective mass, effective stiffness,
damping factor, and angle of movement at the bridge. It
also has a radiation efficiency and pattern, which would
be relevant if the desire was to synthesise the sound field.
However, the emphasis here will be on predicting the tran-
sient response measured on the structure. So far as this
paper is concerned, sound radiation is relevant only as
one mechanism contributing to the modal damping fac-
tors. Other effects of the air around the guitar body are
included implicitly: they influence the input admittance,
and the “modes” into which this may be decomposed are
the coupled air-structure modes. It will be seen that this
sub-problem is already quite challenging, without the ad-
ditional layer of difficulties associated with radiation and
room acoustics.

The relation between input admittance (velocity per unit
force) Y (w) of the body at the string’s attachment point
and the modal properties is given by the standard formula
(see for example Skudrzyk [12])

iw
Y = 1
@) zk: my(wi + lwwpne — w?)’ M

where w is the angular frequency, and the kth mode of vi-
bration of the body (including the surrounding air) in the
absence of the strings has effective mass my, natural fre-
quency wy, and modal damping factor n;, (or corresponding
modal Q-factor @, = 1/ny). The “effective mass” is re-
lated directly to the kth mode shape uy: if the mode shape
is normalised in the usual way with respect to the system
mass matrix [11], then

my = 1/uj (bridge), )

where (bridge) connotes the attachment point of the string.
At least for the moment, the mode shapes, and hence
the effective masses, will be assumed to be real: in other
words, proportional damping is assumed for the body vi-
bration. Damping will also be assumed to be small, so that
M < 1or @ > 1. Very similar expressions to equa-
tion (1) hold for the more general case of the 2 x 2 ad-
mittance matrix at the bridge, which is needed when both
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string polarisations are included in the synthesis model.
Details of this case are given in section 3.3. (Note that the
expression (1) appears at first sight to be different in form
to the expression for admittance given by Christensen and
Vistisen [13, equation(6a)], which takes explicit account
of the structure and the enclosed air. However, if the de-
nominator of their expression is factorised and the whole
expression then expanded in partial fractions, it takes the
form (1) above.)

2.2. Modal synthesis

The first class of synthesis methods works by computing
the coupled string/body modes, together with appropriate
frequencies and damping factors, then using modal super-
position to construct the transient response. This could be
the response to an idealised pluck, a step function of force
applied at a single point of the string, or more generally it
could be the response to any given patterns of initial dis-
placement and velocity: for example, the low-pass filtering
effect associated with the finite stiffness and radius of cur-
vature of the player’s fingertip could be included (see for
example Benade [14, chapter 8]).

The simplest modal approach proceeds in four stages.
First, a suitable set of generalised coordinates is chosen
to describe the motion of the string and body, and the
mass and stiffness matrices for the coupled system are
worked out in terms of these generalised coordinates. For
the present purpose, the most natural choice of generalised
coordinates consists of (i) the mode amplitudes of the body
in the absence of strings; (ii) a set of Fourier series coeffi-
cients for the string displacement, in other words the am-
plitudes of what would be the string modes if both ends
of the string were rigidly fixed; and (iii) one or two “con-
straint modes” (see e.g. [9]), to allow the string to move at
the end attached to the body. The resulting mass and stiff-
ness matrices will be calculated in detail in section 3.1. In
the second stage of the pluck calculation, the modes and
natural frequencies of the coupled string/body system are
computed in the absence of damping by standard eigen-
value/eigenvector analysis. Third, a suitable )-factor is
calculated for each mode using a small-damping argument
based on Rayleigh’s principle [15, 16]. Finally, the tran-
sient response to an ideal pluck at a given position on the
string can be calculated using a standard modal superposi-
tion result: again, details are given in section 3.1.

The method just outlined is precisely what is used in
the vast majority of calculations of the vibration response
of complex structures. For example, almost all Finite-
Element calculations work this way (although they usu-
ally use a cruder estimate of modal damping than that
resulting from the Rayleigh’s quotient method). Unfortu-
nately, as pointed out by Gough [6], this method does not
always give a good approximation to the correct answer.
The crucial issue concerns what is usually called “veer-
ing” behaviour [17]. Imagine adjusting the tuning of the
string so that one particular string overtone passes close
to the frequency of a body mode. At the point where the
string and body resonant frequencies were expected to co-
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incide, the undamped modal calculation will always pro-
duce two separated frequencies, with the two correspond-
ing coupled modes involving significant motion of both
string and body, in phase for one mode and in antiphase
for the other. The Rayleigh calculation of modal damp-
ing factors will assign both modes equal damping at this
“tuned” point. This effect, giving relatively high damping
to both modes when playing a note very close to a strong
body resonance, is often described by guitar players with
a phrase like “this note falls flat”. However, the intrinsic
internal damping of the string mode will generally be far
lower than that of the body mode, and under these circum-
stances Gough shows that the correct result may be very
different from that just described. If the disparity of damp-
ing between the string and the body is large compared
to a measure of the strength of coupling between string
and body, then when the string mode is tuned through the
frequency of the body mode, behaviour is seen similar to
that illustrated in Figure 1. Figure 1(a) shows the variation
of the two modal frequencies through the “tuning” range.
The frequencies calculated ignoring damping show “veer-
ing” behaviour, but the correct frequencies allowing for
the effects of damping cross over. Figure 1(b) shows the
corresponding behaviour of the modal loss factors. When
calculated by the Rayleigh argument based on undamped
modes, the two curves cross so that at the “tuned” condi-
tion the damping factors are equal. In the correct calcu-
lation, by contrast, the two damping factors remain very
different throughout the range, so that it is always possi-
ble to identify one “string” mode with low damping and
one “body” mode with higher damping. The key to the
difference in behaviour is that the mode shapes become
significantly complex in the correct calculation, invalidat-
ing the assumption underlying the Rayleigh method. The
detailed calculation leading to this figure will be described
in section 3.4.

To avoid the problem just illustrated, it is necessary to
tackle the rather murky question of how the damping of
the string/body system should be modelled, so that real-
istic modal behaviour of the coupled, damped system can
be calculated. Unfortunately, there is no universal damping
model which has the same physical credibility as the stan-
dard models of elastic and inertial effects through the stiff-
ness and mass matrices. When an explicit damping model
is needed, it is conventional to use the “viscous damping
model” first introduced by Rayleigh [18]. If it is assumed
that the rate of energy dissipation depends only on the in-
stantaneous values of the generalised velocities, then for
small motions it is reasonable to approximate this dissipa-
tion rate by a quadratic expression in the velocities, and
thus introduce a third matrix, the dissipation matrix C, so
that the equations of free motion of the system take the
form

Mg+Cq+ Kq=0, 3)

where q is the vector of generalised coordinates, and M
and K are the mass and stiffness matrices respectively.
Whether and when it is acceptable to use this viscous
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Figure 1. Veering and non-veering behaviour in a simple model
of one string mode coupled to one body mode. The uncoupled
body mode has a fixed frequency and a ()-factor of 100, while the
uncoupled string mode has a Q-factor of 3500 and a frequency
varying over a small range. The variation of (a) the coupled mode
frequencies and (b) the modal damping factors is plotted against
the frequency ratio of the two uncoupled modes. The dashed lines
show “veering” behaviour, when the calculation is based on un-
damped modes followed by Rayleigh’s principle to determine
modal damping, while the solid line uses the first-order method to
find damped modes directly and shows “non-veering” behaviour.
The detailed theory is given in section 3.4

model of damping is a subject of some debate (see for ex-
ample [19, 20]). It will be used provisionally in this study,
but it should be kept in mind that experimental results may
require the issue to be revisited in the future.

In the undamped problem, it is always possible to re-
duce M and K to diagonal form by using the modal am-
plitudes as new generalised coordinates. With three matri-
ces M, C and K, it is not possible to diagonalise all three
simultaneously by using modal coordinates. It is there-
fore common to introduce a further approximation at this
point, so-called “proportional damping”. Since informa-
tion about C' for real systems is usually rather sketchy,
it may be assumed that it is diagonalised simultaneously
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with M and K by the usual (real) mode shapes. There
are some mathematical conditions under which this is jus-
tified (see Caughey [21]), but there is rarely any reason
to expect these conditions to hold for a physical system.
Proportional damping is simply a mathematically conve-
nient assumption, which usually works well enough. In
the string/body coupling problem, Gough’s result shows
that we cannot make this assumption.

To retain a “modal” approach while solving equations
(3) with a non-proportional damping matrix C, the usual
method is to recast the equations into first-order form. This
can be done in more than one way, but the most direct is
to define a double-length vector

q
=171, 4
D {J 4
and a 2N x 2N matrix
0 I
A= {—MlC —-M1K |’ )

where 0 denotes the V x N zero matrix and I the N x IV
unit matrix, N being the number of degrees of freedom.
The equations (3) can then be rewritten

p = Ap. (6)
Now a modal solution p(t) = vy e**! leads to
A’Uk = /\kvk. (7)

Solving this eigenvalue/eigenvector problem yields the
(complex) mode vectors and associated complex natural
frequencies, and there are then standard formulae for fre-
quency response functions and impulse response functions
in terms of modal sums (see for example Newland [22,
chapter 8]).

In summary, there are two types of modal synthesis
which could be used for guitar plucks. One is based on
undamped modes, post-processed to give damping fac-
tors, while the other uses the first-order approach to give
damped modes directly (assuming a viscous model for
damping in the whole system). The first of these is sim-
pler and involves smaller matrices, but may give wrong
answers under some circumstances. The second is more
accurate, but at the cost of doubling the size of the eigen-
problem to be solved. Both methods share certain advan-
tages over some other methods to be discussed shortly.
First, they work in terms of degrees of freedom which are
very natural: loosely, “string mode amplitudes” and “body
mode amplitudes”. This is very convenient for paramet-
ric studies; for example, to explore the influence on sound
quality of particular body mode frequencies and damping
factors. A second advantage is that once the modes have
been computed, the desired transient response is given by
an explicit formula which introduces no further approx-
imations or numerical difficulties. If a calculation of the
radiated sound is wanted, the modal formulation is again
convenient: the modal sum expressing the transient re-
sponse simply has to be weighted by factors describing
the modal radiation strengths (e.g. [23, 24]).
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A disadvantage of these methods is that they require the
body response to be expressed in terms of modal prop-
erties over the entire frequency range. This is simple and
natural at low frequencies, but by frequencies of the or-
der of 1 kHz in a typical classical guitar the modal overlap
factor of the body starts to become significant, and above
that it is neither easy nor unambiguous to extract modal
parameters from a measured admittance.

2.3. Frequency domain synthesis

A completely different approach to the synthesis problem
is to deal with the string/body coupling in the frequency
domain, and then use an inverse FFT to create the required
time-varying transient response. This method is attractive
because the string and the body are coupled together at a
single point, and there is a very simple method which can
be applied to any such problem: if two systems have in-
put admittances Y; (w) and Y>(w) and they are then rigidly
connected at the points at which these admittances are de-
fined, then the coupled system has an admittance Y at that
point satisfying

1ol ®)
Y © %

This result expresses the fact that at the coupling point,
the two subsystems have equal velocities while the total
applied force is the sum of the forces applied to the two
separate subsystems. In the more general case in which
the coupling applies to more than one direction of motion,
then an equivalent result applies to the relevant admittance
matrices:

Yy l=v 4y, 9)

The body is naturally described in terms of its admittance
(or admittance matrix), as already described. By calculat-
ing the corresponding admittance at the end of a string,
which will be derived in section 3.2, these results can be
applied immediately to give the impedance or impedance
matrix of the strung guitar at the bridge.

To use this method to derive a pluck response, use can
be made of the reciprocal theorem of vibration response.
We wish to find the body vibration which results from a
step function of force applied at a given position on the
string. Reciprocally, we can consider applying the force at
the bridge, and calculate the resulting motion at the rele-
vant point on the string (and in the relevant direction there,
if string polarisations are to be taken into account). To
solve this reciprocal problem, we simply have to multi-
ply two transfer functions together. The first is the coupled
admittance just calculated, which gives the velocity at the
bridge when a force is applied there. The second is the
dimensionless transfer function between a given displace-
ment applied at one end of a string and the corresponding
displacement at the point where the pluck is to be applied.
This second transfer function is also derived in section 3.2.

The advantages of this frequency-domain approach are
that it is very simple, and that it gives the choice of ex-
pressing the body admittance in terms of modes, as before,
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or of using the measured admittance directly, thus avoid-
ing the complication of modal fitting at high frequencies.
A potential disadvantage of the method is its reliance on
inverse Fourier transformation at the final stage. Given the
inevitable discrete frequency resolution and finite band-
width it is hard to guarantee an answer which is absolutely
causal. However, it will be seen in section 4 that a suffi-
ciently causal result can be achieved, and that makes this
method very attractive.

Finally, it should be noted that there is a completely
different approach to frequency-domain synthesis based
on equation (3). By adding a vector of appropriate gen-
eralised forces on the right-hand side of this equation and
then taking the Fourier transform, it is clear that the matrix
of transfer functions can be derived directly by inverting
the so-called “dynamic stiffness matrix”

D =—-w’M +iwC + K. (10)

Using the same expressions for M, C' and K as are needed
for modal synthesis, this inversion can be carried out fre-
quency by frequency, then the relevant transfer function
extracted from the matrix, and an inverse FFT performed
to give the transient response. This method has the virtue
of great conceptual simplicity, but in practice it is ex-
tremely slow. The method is useful as a cross-check on
the coding of other methods, but is not a serious contender
for an efficient synthesis algorithm.

2.4. Time domain synthesis

Finally, there is a class of possible synthesis methods
which work directly in the time domain. Two such meth-
ods can be found in the existing literature: to use a finite-
difference approach to integrate directly the differential
equation governing string motion [25], or to adapt the syn-
thesis method used in bowed-string studies, the so-called
“digital waveguide” approach (see for example [10, 26]).
The finite-difference method starts from the differential
equations for the string and body motion. The various
derivatives are approximated by difference formulae, and
the result is a formulation which lends itself to forward
integration by time marching. However, to apply such a
method to the model which will be used here, includ-
ing such effects as string bending stiffness, frequency-
dependent damping and accurate body modes up to at least
5kHz, would require a level of detail in the implementa-
tion which goes well beyond published work, and probably
poses significant challenges of accuracy and speed, so this
approach will not be explored further here.

The digital waveguide approach is mathematically clo-
sely related to the finite-difference method, but expressed
in a more flexible and versatile form which does not rely
on underlying differential equations. The various physi-
cal effects from the strings and the body are taken into
account via “reflection functions”, essentially impulse re-
sponses which encapsulate the various processes of dis-
sipation, dispersion and reflection which occur as a wave
travels back and forth along the string. Any process which
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can be represented by a digital filter of some kind can be
incorporated.

Earlier bowed-string studies have provided almost all
the ingredients necessary to attempt a synthesis of a gui-
tar pluck comparable to those possible by the other meth-
ods already mentioned. The basic behaviour of transverse
waves on an ideal string is handled directly by the dig-
ital waveguide method. The dispersive effect of bending
stiffness in the string can be handled using a reflection
function reported by Woodhouse [27], and this has been
shown to work well to reproduce the pluck response of a
violin E string held by relatively rigid terminations [28].
For a trial of the method, internal damping in the string
can be handled using a “constant-()” reflection function
[29]. Frequency-dependent string damping could in prin-
ciple be incorporated by designing a suitable digital fil-
ter. Body resonances can be incorporated via a suitable
reflection function based on the impulse response of the
body [30]. Using the modal properties of the body input
admittance, this can be efficiently implemented using re-
cursive IIR digital filters, one per mode (see for example
[31]). Bowed-string studies have not generally considered
the second polarisation of string motion, but there is no
difficulty in principle in incorporating this into the model.
In short, existing algorithms can be assembled to give a
time-domain synthesis method for a guitar pluck which
addresses the same physical phenomena which will be in-
cluded in the other methods.

However, the results of a test case were disappointing.
In section 4, the results will be shown of syntheses by var-
ious of the methods described above, using a standard set
of parameters: 6 seconds of synthesis, a sampling rate of
22050 Hz, and enough string and body modes to cover the
range up to 5 kHz. At this sampling rate, the digital waveg-
uide synthesis as described above proved to have poor ac-
curacy, and more seriously it frequently resulted in unsta-
ble, growing behaviour when trying to cope with the rather
low inherent damping of guitar strings. This instability had
its origin in problems with the “stiff string” reflection func-
tion, with appropriate parameter values for classical gui-
tar strings. None of the other methods described earlier
have the possibility of instability in this sense. These faults
can be corrected, mainly by using a higher sampling rate.
Equally, different digital filters could no doubt be designed
to improve matters, as has been done in work aimed at
musical synthesis (e.g. [10]). However, in the implemen-
tation used here and in comparison with other methods
presented, this method does not offer an accurate and ef-
ficient synthesis method for guitar plucks for “laboratory”
purposes, and it will not be considered further here.

3. Implementation details

In this section a number of technical aspects of the syn-
thesis algorithms are dealt with, in order that explicit im-
plementations of various candidate methods can be made.
The results of these are then compared with each other in
section 4, and with experimental measurements in a com-
panion paper [1].
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3.1. Computing the coupled modes

All the modal methods require the mass, stiffness and
damping matrices for the coupled string/body system.
These are derived here for the case of a single polarisa-
tion of string vibration. The extension to include two po-
larisations is dealt with in section 3.3. A convenient and
simple approach to the problem is to use Rayleigh’s prin-
ciple based on three sets of generalised coordinates: the
modes of the string with pinned ends, the modes of the un-
strung body as experienced through the coupling point at
the bridge, and one “constraint mode” which is the static
response of the string when the end at the bridge is allowed
to move [9]. Accordingly, write the string displacement in
the form

N, .
x . jTx
y(x) :agz—f—;—l a; sin =, (11)

where the quantities ag, a; are the (time-dependent) am-
plitudes of the constraint mode and the jth pinned string
mode respectively, and N is the number of string modes
used in the calculation. (Pinned boundary conditions for
the string in isolation seem appropriate, even in the pres-
ence of bending stiffness, because of the “crossed cylin-
der” geometry of a string over a fret or over the bridge
saddle.) Similarly, denote the amplitude of motion at the
bridge of the kth body mode by by,. For the string and body
motion to be equal at the pointz = L,

Ny
ag =Y b, (12)
k=1

where Vy is the number of body modes used in the calcu-
lation.
The total potential energy of the system is then

1y 1 [E oy

0

1 L 92y\2
°B (—) da, 13
+ 2 /0 ox? o (13)
where the three terms arise respectively from the stored en-
ergy in the body resonances, the energy in the string due to
tension effects, and the energy in the string due to bending

stiffness effects. The terms s; denote the effective stiff-
nesses of the body modes, defined by

Sp = mkw,%. (14)

Substituting equation (11), eliminating ag using (12) and
evaluating the integrals leads to

N, N, 17
1 . 1T
= 5 E Skbi-# E by,
k=1

1T7T .2 z i 4 2
t39rn Z 22L3 2 ey (15)

Jj=1
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from which the stiffness matrix may be immediately de-
duced. In terms of the coordinate vector

q= [a17a27a37"'7b17b27"']t (16)

it is given by

-l

0 Ko
where

Tn? Bt 4T 16 B
K = diag ) 57+ 55 50 T o

j2T7T2 N j4B7T4
T TR
and
si1+T/L T/L --- T/L
T/L sy+T/L
Koy = : .(17)

T/L sk +T/L

In a similar way, the total kinetic energy of the system is
—w?T where

T 1 al 2 1 g 2
_ISh e 1pL[]E, 1pLe
=32 mbi+ 55 Z k +§72%

k=1 k=
N, .
12pL <Z ) “ (=1)ig;
-5 b — |, (13)
j

j=1

from which the mass matrix may be written down:

M= [Mll M12:|,

M{y My
where
My, = diag{pL/?,pL/Z,...,pL/2,...},
pL/m pL/m pL/m
—pL/2x  —pL/27 —pL /27
Mz = 'E+1 L j+1 pL §+1 L
_ L (_ eL .. (_ L ..
(—1)HLEL (Z1)itIEL L. ()il
and
- L L L
m kg i
B mat e
My = : . (19)
o o
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As is usual with a “constraint mode” formulation, the stiff-
ness matrix has no string/body coupling terms: these occur
only in the mass matrix (in submatrix M) [9].

The next requirement is to specify the associated damp-
ing behaviour. The simplest possible model will be taken.
Each body mode and each string mode (in the absence
of body coupling) will be assigned an individual modal
Q@-factor. In practice, the body damping factors are deter-
mined as part of the process of modal fitting to measured
admittance behaviour, while the string damping factors
will follow a systematic trend with frequency of the kind
measured by Valette [3]. Notice, though, that an assump-
tion underlies this apparently obvious damping model:
by specifying only “modal damping factors”, proportional
damping is implicitly being assumed for the string and
the body considered in isolation. In the light of the earlier
comments about the dubious justification for any assump-
tion of proportional damping this may seem a little odd.
However, it seems to be the only realistic assumption at
the present time, given the difficulty of obtaining reliable
experimental data on non-proportionally damped systems.
This is an issue to which it may be necessary to return in
the future: for example, the “body modes” used here are
in reality coupled air/body modes, and it is possible that
this coupling may lead to significantly complex modes,
and also to complex “modal masses” in the formulation
used here.

Two different methods for incorporating damping into
modal synthesis of the coupled string—body system were
described in section 2.2: via post-processing of the un-
damped modes using Rayleigh’s principle, and via a vis-
cous damping matrix C'. For the Rayleigh method, the ex-
pression for the total potential energy (13) of the string and
body is modified by replacing the tension, bending rigid-
ity and effective stiffnesses of the body modes by complex
values embodying the desired )-factors:

T —T(1+4+i/Qr),
B — B(1+1i/QpB),

The damping factors associated with the tension and the
bending rigidity can vary with the frequency of the mode
in question if desired. The Rayleigh quotient incorporat-
ing these complex constants but evaluated using the un-
damped mode vector as a trial function gives an approx-
imation to the complex frequency of the damped system
[16], and hence the @)-factor of the coupled string/body
mode in question:

1 o \sm{wg} ul K'u,

21
Q. Refw?} T ulKu,’ @
where
. _[Kj; O
K —[ 0 Kb,
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with
, . Tr? Brt  AT#? 16B7t
Kll = dla‘g + ) )
2LQr  2L3Qp 2LQT  2L*Qp
j2T7T2 j4B7T4
O 9L0Or 2305
and
sy T T T 7
Q1 LQr LQr LQr
T S2 4 T
LQr Q2 LQr
Kjy= : (22)
T Sk + T
LQr Qk LQr

For the viscous damping model, the dissipation matrix
takes the simple diagonal form

_ 011 0
C—{ 0 022}’
where
m/Tp .. { 1 2 J }
Ci = dia, , e seee 0
H 2 & Qsl Qs? Qsj
. S11M1 S§21712 Sk
Csyy = dia , e ,oe- 0, (23
2 g{ ST o } 23

and @) ; is the Q-factor of the jth string mode.

This completes the information needed to calculate the
coupled modes, either undamped or damped. The calcu-
lation of the response to an ideal pluck at position z is
then simple. In the first case, suppose that the undamped
modes u, and natural frequencies w, have been calcu-
lated from M and K, and the appropriate modal () factors
@, determined from equation (21). Each mode should be
normalised so that

ul Mu, = 1.

A standard formula for impulse response can now be used.
Note that the velocity response of the body to an impulse
applied to the string will be the same as the acceleration
response of the body to a step function force applied at the
same point. This acceleration response is then given by

N
g(t) = Z QB oS (wnt) e wnt/2Qn (24)

n=1

where

an = Z b;cn)
k

is the modal motion at the bridge from equation (12),

where bggn) denotes the value of by, appropriate to the nth

mode, and

Ns
Brn = anz/L + Zag.n) sin (jma/L)

Jj=1
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is the corresponding motion at the plucking point = from
equation (11), where agc”)
priate to the nth mode.

A similar modal sum can be used if damped modes
and frequencies have been calculated using the first-order

form:

denotes the value of aj, appro-

2N
9(t) =D mpne™t, (25)
n=1

where (3, is as above, and

N
Tn = Z Xk,

k=Ns+1

X=V_ M

where right

and Vr;git is the 2N x N matrix which is the right-hand
half of the inverse of the matrix whose columns are the
eigenvectors of the matrix A: see [22, equation (8.110) et

seq.].

3.2. Frequency response functions of the string

The frequency-domain synthesis methods require as input
the drive-point impedance at the end of the string, and also
the transfer function linking motion at the end to motion
at the required plucking point. For the case of an ideal, un-
damped string there are analytic formulae for both. How-
ever, the effects of bending stiffness and, more impor-
tantly, string damping are essential to an accurate synthe-
sis. To include these effects, one simple approach is to ex-
pand the analytic expressions in partial fractions, interpret
the terms as corresponding to the modes of the string, then
adjust the complex pole frequencies to allow for stiffness
and damping. The residues associated with these poles are
kept unchanged — this amounts to the same approximation
as assuming that the string in isolation has proportional
damping.

Suppose the string is fixed at position z = 0, and that a
harmonic displacement we “? is imposed at z = L. To sat-
isfy the fixed boundary condition, the string displacement
must take the form

y =asinwz/c,

where a is a constant and ¢ = /T/p is the wave speed
on the string. Imposing the other boundary condition fixes
the value of a, so that the response is

sinwz/c 26)

=w—.
Y sinwL/c

Now if the end motion is caused by a force fel“? applied
to the string, force balance requires

y _ TwwcoswL/c
or|,_,

T

=T
! csinwL/c

so the required end impedance is

T L L
Z:,i:,—cotw—:—ichotw—, 27
iww ie c c
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where Zj is the characteristic impedance of the string.
The impedance Z has poles at wL/c = nm, n =

0,+£1,+2,.... It is readily shown that all poles have the
same residue —iT'/ L, so
i — 1
Z=— - (28)

L w —nmefL
o0

n=-—

The corresponding expression with (small) modal dam-
ping included is

iT

7 = —
L

1
w +Z{w w;(1+1in,;/2)

1
+ w+ w;i(1—ins;/2) }]
> — iw;ns;
+ > { S Tp—- }] . 9)

j=1 J

22

where 7;; = 1/Q)s; is the loss factor of the jth string
mode. The modal frequency can be adjusted to allow for
small bending stiffness in the string by setting

imc B sjm\2
“W“f@*ﬁ(f)} (30

a result which follows from Rayleigh’s principle applied
to the string terms of equation (13). A similar procedure
can be applied to equation (26) to provided a damped ap-
proximation to the transfer function from the end of the
string to the plucking point:
~ T E j 2wsinj7m:/L N
L L 1:1 — Wwwjns; — wj

SIE

€29

Note that equations (29) and (31) both give the correct
static response: when w = 0 the string deflects in a straight
line, the same shape used earlier as the “constraint mode”,
and the impedance is then spring-like with a stiffness 7'/ L.

Note in passing that equations (29) and (31) could also
be derived by a different approach, which is commonly
used in earthquake engineering (e.g. [32]). Starting from
the expression (11), the applied end displacement can only
drive directly the motion described by the constraint mode.
That motion has associated with it an inertial reaction
force (a “d’Alembert force”) distributed along the string,
which can be resolved into components driving the other
modes of the string, leading to expressions for the desired
transfer functions.

3.3. String polarisations

The modal and frequency-domain synthesis methods can
be readily extended to include two polarisations of string
motion. At the bridge, motion normal and parallel to the
soundboard has to be taken into account, so in place of
the input admittance Y there is a matrix. It is convenient
to define Y7, to be the previous admittance in the normal
direction, so that Y5, is the admittance in the direction
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parallel to the bridge saddle, and Y7, is the cross admit-
tance. As before, these can be expressed in terms of body
modes. However, we now need an additional property of
each mode: the angle 8}, of the body motion at the bridge
measured from the normal direction. Then

Yll(w) = Z mk(w2

k k

Y22(w) = Z mk(w2

k k

iw cos? 0y,

— iwwgny — w?)’

iw sin? 0,

— iwwgny — w?)’

and

iw cos 0}, sin 6,
Yia) = Yau(@) = 3 g

k

k

. (32
— lwwgng — w?) (32)

This is all that is needed for frequency-domain synthe-
sis via equation (8), except to note that the string be-
haviour is rotationally symmetric so that the correspond-
ing impedance matrix is simply the impedance Z from
equation (29) multiplied by a 2 x 2 unit matrix.

For modal synthesis, it is necessary to introduce a sec-
ond constraint mode, identical in form to the first but in the
plane parallel to the soundboard. Then express the string
motion in that plane analogous to equation (11), as

= % Za sm (33)

where the quantities ay,, a; are the equivalents of ag, a;
for this plane. Now from continuity of displacement at the

bridge, N
b
Z by, cos by, ay = Z brsindy, (34)

k=1
in place of equatlon (12). The calculation of kinetic and
potential energies then follows very similar lines, except
that the term [ b;]? is replaced by

[Z by, cos Gk} ’ + [Z by, sin ek] :
= Z Z bkbl COS(ek - 0[) (35)
k1

In terms of an extended vector of generalised coordinates

t
q = [a1,a2,a3,...,a,ay,a5,...,by,by, .. ], (36)

the result for the stiffness matrix is

Ki 0 0
K=|0 Ky 0 |,
0 0 Ks

where K, is as before and

K33 = (37)
r 51+ % COS(QlEQQ)T . cos(ﬁlgﬁk)T 2
COS(QlEQQ)T P +%

cos(01—04)T T
-5 Sk + T
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The mass matrix is given by

My 0 Ms
0 M1 Mg |,
M1t3 M2t3 M3s

M =

where M7 is as before,

B cosfipL cos fa2pL
I I
__cosbipL __cosfapl
2 2T
M3 = :
(—1)j+1 cos 01pL (_1)j+1 cosbapl .
jm Jjm
cos B pL 7]
cosTrijL
- 27
M )
o (=1)itrcestiel
jm
B sin 01pL sin fopL
T T
__sinfipL __sinflapL
2T 2T
Myz = .
j+1siné,pL j+1sinfapL .
(1)L ()i sindzol
sin ;pL ]
i
__sinf;pL
27
. (=1)it18nbiel
(—1)7+18n s
and
M3z = (38)
B pL  cos(01—02)pL  cos(01—0k)pL ]
my + 3 3
cos(f1—602)pL

eL
3 my + 5

cos(01—0)pL pL
3 my + 5

If the assumption of proportional damping for the string
and body separately is retained, then the matrices K’ and
C may be obtained by simple extension of the earlier re-
sults:

(Kl 0 0]
K=10 K, o], (39)
0 0 K|
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where K1, is as before and

N T cos(01—-02)T  cos(01—0x)T 7
Q1 LQr LQr LQT

COS(91792)T 82 + T
LQr Q2 LQr
K§3 = : .
COS(91792)T Sk + T
LQr Qk LQr
and
Ci1 0 0
C=|0 C;;1 0 |. (40)
0 0 Coy

It is worth noting what the proportional damping assump-
tion means in this particular context: if the body damping
is proportional, then in a given mode the connection point
at the bridge moves along a straight line (at the angle ;) as
assumed here. If the body damping were not proportional,
this would allow the possibility of a phase difference be-
tween the components of body motion, so that the contact
point would travel around an ellipse.

3.4. The criterion for ‘non-veering’

From the matrices derived in sections 3.1 and 3.3, it is sim-
ple to recover Gough’s criterion for ‘non-veering’ men-
tioned earlier. At a frequency where modal overlap is low,
it may be reasonable to approximate the behaviour when a
string overtone falls close to a body resonance by keeping
just the two generalised coordinates concerned. The sys-
tem matrices then take the general form

_ | m1 m3 _ k’l 0 _|1a 0
=] x5 a) e=[5a] @
where the individual symbols are defined by comparison

with equations (17), (19) and (23). The complex natural
frequencies are the roots w of the equation

det{ WM +iwC + K} —0,
which reduces to

(w} +iwer /iy — w?) (42)

(wg + iwea /ma — wz) = wi)?,
where

w? =kj/m;, j=1,2,
and

A =m3/(mims).

This can be turned into a quadratic equation in w? if the
damping terms within the two bracketed expressions are
approximated by

iwey fmy =~ iw%/Ql and iwey/mo & iwg/Qg
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in terms of the Q)-factors ()1, ()= of the string and body
modes respectively. At the tuned condition

wi = wj,
the roots for ) = w/w; are then given by
0~ [2+1/Q1 +1/Q2
£ VAN (1 +1/Q1) (1 +1/Q2) — (1/Q1 — 1/Q2)?

[ea -] o 3)

The two roots are separated by an approximately real
quantity if the expression inside the square root has a pos-
itive real part. This would mean that the two modes have
similar () factors but different frequencies, i.e. that veer-
ing has occurred. Conversely, if the expression inside the
square root has a negative real part then the two modes
have similar frequencies but different () factors, as seen in
Figure 1 for the non-veering case. Assuming small damp-
ing so that the two expressions (14i1/Q);) inside the square
root can be ignored, the condition for non-veering is thus
approximately

407 < (1/Q1 — 1/Q1)*. (44)

The non-veering case illustrated in Figure 1 has Q; =
3500, > = 100, and A = 0.0035, slightly below the
threshold value of 0.0049 given by equation (44).

Substituting the actual values from equation (19), the
condition becomes

8 11\’
- <|l=-=1, (45)
m2j*(1/3 + mx/pL) <Qk Qsj)
or more interestingly

9 8

T2 EOR DG e

For a given string, only the lower modes are likely to cou-
ple strongly to body modes. Higher values of j are pro-
gressively more likely to satisfy this non-veering criterion.
To see what this means in practice requires numerical
data. As will be described in section 4 and more fully
in the companion paper [1], a plausible set of parame-
ters has been determined for a particular guitar and its set
of strings. Using these, condition (45) can be illustrated
graphically. Each of the six strings is considered in turn,
and for each string every note from the open string to the
12th fret is considered. For each of these notes, all string
overtones below 2 kHz have been calculated, and for each
of these the nearest body mode found, and the criterion
(45) evaluated for this combination of string mode and
body mode. Figure 2 shows the result: a symbol is plotted
for every overtone at every fret on every string, showing
the value of the right-hand side minus the left-hand side
of this inequality. From the figure it is clear that “veering”
behaviour (negative values) is only predicted for this gui-
tar below about 300 Hz. Above that, the value of the plot-
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Figure 2. The “non-veering” criterion (45), for each overtone of
every note on every string of a test guitar. Positive values indicate
non-veering behaviour.

ted quantity is always positive so that “non-veering” is the
rule. Synthesis using the undamped coupled modes and the
Rayleigh estimate of damping is likely to give seriously
misleading answers at all higher frequencies. Of course,
the analysis described in this subsection will not apply
strictly once the modal overlap becomes significant, but
one might expect the qualitative conclusion to hold never-
theless. Detailed simulation comparisons will be shown in
section 4.3.

A similar calculation can be carried out allowing for
both polarisations of string motion: in other words, a pair
of string modes coupled to one body mode. Equations (41)
are replaced by 3 x 3 matrices extracted from equations
(37), (38) and (40). However, it is not necessary to work
through the details of this case to see what the answer will
be. The string behaviour is rotationally symmetric: there is
no significance to the particular two polarisation directions
chosen, and any two orthogonal directions would give the
same answer. However, the body mode behaviour is not
rotationally symmetric: the chosen mode involves motion
at the bridge at the appropriate angle 6y, and in the per-
pendicular direction the body has no motion. The coupled
string/body modes must respect the plane of symmetry as-
sociated with this body motion. The result is that string
motion in the plane parallel to the body motion will couple
to the body exactly as analysed above, while the perpen-
dicular polarisation will be unaffected by body coupling.

This means that at frequencies where modal overlap in
the body is low, so that this approximation should hold,
one string polarisation is uncoupled to the body motion
and therefore unable to radiate sound. The player will in
general excite a mixture of both polarisations, and they
will vibrate with two different decay factors, but the ra-
diated sound will show little trace of the “double decay”
which occurs in other systems with similar behaviour, such
as coupled piano strings [33]. The slow-decaying mode
can only radiate via distant modes which have a differ-
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ent angle . (This simple result would change if non-
proportional damping of the body mode was allowed, so
that the body motion was no longer along a single line.)
At higher frequencies where modal overlap in the body be-
comes significant the behaviour may be different: a given
string overtone will couple significantly to more than one
body mode, with different values of 6y, and it is likely that
both polarisations would couple to body motion and thus
be able to radiate sound to some extent. To assess what
really happens at these higher frequencies is one of the
major reasons for carrying out full syntheses using both
string polarisations. Results will be shown in section 4.5.

3.5. Body coupling via the fingerboard

So far, it has been assumed that the string couples to the
body only at the bridge. However, in reality there will ob-
viously be some coupling through the nut or fret. Pub-
lished measurements of the admittance of a typical guitar
at the frets [34, 35] suggest that this would make only a
small difference to the predictions, so it will not be taken
into account in the remainder of this paper. However, it
would be straightforward to extend the methods devel-
oped here to allow for a non-rigid nut or fret. For the
modal methods, additional constraint modes would be in-
cluded which would be the mirror image of those used so
far: moving at the fret but fixed at the bridge. To extend
the frequency-domain methods requires a little more care,
since the coupling would no longer be at a single point.
However, the matrix version of the coupling formula (9)
can be extended to multiple-point coupling, by assembling
matrices which contain as many dimensions as there are
degrees of freedom constrained by the coupling: they will
be 2 x 2 matrices if one string polarisation is allowed, and
4 x 4 if two are allowed. Note that these matrices would
involve not only the admittances at the bridge and fret, but
also the transfer admittances between bridge and fret.

The most likely context in which string/body coupling
through the frets might be significant is for the higher frets
which lie over the soundboard rather than on the neck. It
is a common complaint of guitar players that some notes
in these positions “fall flat”, presumably implying a decay
rate more rapid than is desirable. Guitar makers often in-
clude additional bracing under this area of the soundboard
to reduce the problem. Another context in which coupling
at the fret might be important would be in analysing the be-
haviour of solid-body electric guitars. Although the body
vibration does not directly produce the sound, the decay
times of the strings are still of great concern to players,
and these decay times are governed by mechanical rather
than electrical effects. One would guess that in this case
the energy loss through the frets might be greater than that
through the bridge.

4. Comparisons between methods

4.1. The test case

The modal and frequency-domain synthesis methods de-
scribed in section 2 can now be implemented and tested.
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Figure 3. Calibrated admittances Y11 (solid line), Y12 (dashed
line) and Y5> (dash-dot line) determined from a test guitar by
measurement followed by modal fitting, as described in the text
and more fully in [1].

For comparisons between methods in this section, a stan-
dardised test case will be used. This relates to the low-
est note of a normally-tuned guitar, the open E string
(82.41Hz). The string length is 650 mm, and the string
properties correspond to a D’ Addario “Pro Arte compos-
ite, hard tension” string: tension 71.6N, mass per unit
length 0.0062 kg/m, string () factor assumed to be 3500 for
all modes, and bending stiffness 5.7 - 10~° Nm?. Modal-
based methods allow for 65 string modes, giving a maxi-
mum frequency of 5211 Hz (including the effect of bend-
ing stiffness). The value for bending stiffness comes from
measurements reported in the companion paper [1]. The
constant-) damping model is not realistic, but the numer-
ical value used here is of the correct order of magnitude
for the mid-frequency overtones of the string.

The determination of the body vibration model is also
explained in the companion paper [1]. It uses 240 modes,
up to a maximum frequency of 5190Hz. Up to 1500 Hz
the modal parameters of mass, frequency, damping and an-
gle were explicitly fitted to the measured admittance ma-
trix of a test guitar. The higher modes were determined by
a “statistical fit” to the measurements, which uses a ran-
dom number generator to give frequencies with the correct
density and spacing statistics, as well as damping factors,
modal masses and angles with approximately the correct
statistical distribution. The resulting admittances Y71, Y72
and Y5 are plotted in Figure 3.

For each method tested, a pluck at a point 20 mm from
the bridge has been synthesised. For methods involving
both polarisations of string motion, a plucking angle of
45° to the normal to the soundboard is assumed. The out-
put variable is the acceleration of the body at the bridge,
in the normal direction. This is a convenient quantity for
comparison with experiments, to be discussed in the com-
panion paper. It is also the simplest quantity which ap-
proximately mirrors the spectral characteristics of the radi-
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Figure 4. Comparison of the first few cycles of synthesised
plucks using the frequency domain method (upper curve) and
the first-order modal method (lower curve). Body acceleration in
response to a pluck amplitude of 1 N is plotted. The upper curve
is offset for clarity.

ated sound (but keep in mind that modal radiation efficien-
cies are not included here). Plucks were synthesised with
a sampling rate of 22050 Hz, high enough that the Nyquist
frequency is well above the highest frequency included in
the model. For efficiency of the frequency-domain meth-
ods, the length of the synthesised pluck was chosen to have
217 samples to expedite FFT calculation. This results in a
synthesis time of 5.94s, a time chosen to be long enough
to minimise “leakage” problems in the methods which use
an inverse FFT to obtain the transient response.

4.2. Accuracy and speed

All the synthesis methods were coded in Matlab, using
vectorised constructions wherever possible to maximise
speed. The first question to ask is whether all the meth-
ods will run at all given the complexity of the problem.
The answer to this is affirmative: in particular, Matlab’s
eigenvalue/eigenvector routine was able to cope with both
styles of modal synthesis. For the first-order method with
both string polarisations, the matrix A has dimension 700
and is not sparse, so it was not obvious a priori that the
calculation would be accurate. However, no difficulty was
encountered.

To check whether the computed answers are reliable,
it is useful to compare results by the first-order modal
method (based on equation 25) with corresponding results
by the frequency domain approach (equation 8) using the
damped-string results (29) and (31). These two methods
use entirely independent approaches and coding, but em-
body similar approximations. Figures 4 and 5 show that
excellent agreement can be obtained between these two
methods, when applied to the most challenging case with
both string polarisations. Figure 4 shows a time-domain
comparison of the first few cycles following the pluck. The
frequency-domain method shows motion at very low am-
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Figure 5. Comparison of the Fourier spectrum of synthesised
plucks using the frequency domain method (upper curve), the
first-order modal method (middle curve) and undamped modes
plus Rayleigh’s principle (lower curve). The curves are offset for
clarity: the upper curve shows the true values. Plots (a) and (b)
show the same spectra over different frequency ranges.

plitude before the pluck, because of the finite length and
resolution of the inverse FFT, but this seems acceptably
small. The top two curves of Figure 5a show a frequency-
domain comparison of the two plucks at low frequencies.
Again, excellent agreement between the two methods is
shown: the only visible deviations occur near the antires-
onances. This time, as one would expect, the frequency-
domain approach gives the more accurate answers while
the first-order modal approach shows minor errors due to
the finite FFT used to generate the plot. This level of agree-
ment extends over the entire frequency range of the syn-
thesis: Figure 5b shows a typical comparison at higher fre-
quencies. The conclusion is that both methods give an ac-
curate synthesis for the test case, whether one or two string
polarisations is required.

Timings for a selection of synthesis methods are given
in Table I. The absolute times are of little significance be-
cause they depend on the machine and the detailed coding,
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Table I. Timing of selected synthesis methods for a 6-second
plucked note including string and body modes up to 5 kHz (see
text for details). The timings of frequency domain methods as-
sume pre-calculation of the body admittance(s), which are read
from a saved file. A quirk of the Matlab code used for these tests
is that the apparently simple case of the undamped modal method
with only one string polarisation gave a persistent error from the
eigenvalue routine, so that case is not included. Pol.: Polarisa-
tions.
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Method Pol. String modes Time [s]
Undamped modal/Rayleigh 2 damped 137
Modal first order 1 damped 215
Modal first order 2 damped 325
Frequency domain 1 undamped 1.6
Frequency domain 2 undamped 1.9
Frequency domain 1 damped 23
Frequency domain 2 damped 23
Time domain 1 damped 798

but the relative speeds of different methods are of inter-
est. Two things stand out from this table. First, the modal
methods are significantly slower than the frequency-do-
main methods. Indeed, the frequency domain approach is
impressively fast: provided the body admittance is calcu-
lated first and saved, since it is the same for every note on
the chosen string, the slowest frequency domain synthesis
method running in Matlab took 23 s for this 6 s note, only a
factor of four slower than real-time performance. The sec-
ond conspicuous feature of Table I is the last entry: this
shows the time for the digital waveguide simulation of the
standard case, with one string polarisation only. Even if the
method had given the correct answer it would have been
hopelessly slow, at least in this style of implementation.

4.3. Modal methods and ‘“non-veering”

Next it is of interest to compare the performance of the
two types of modal synthesis. The earlier discussion of
“non-veering” behaviour, and the prediction of Figure 2,
suggest that the two methods might give similar results
at low frequencies, where the string/body coupling is rel-
atively strong, but that the method based on undamped
modes may be seriously misleading at higher frequencies.
The synthesis results bear out this expectation. Figure 5
shows frequency-domain comparisons of the two meth-
ods, for the case with two string polarisations: the top
two curves, already discussed, show the “correct” result,
and the lower curve shows the results based on undamped
modes and Rayleigh’s principle. Figure 5a shows the low
frequency range, and all three curves are indeed very close
together throughout this range (although there are some
disparities in peak height, hard to see in the plot). How-
ever, Figure 5b shows a typical sample of the behaviour at
higher frequency, and now the methods give quite differ-
ent results. The first-order method shows “string modes”
with very little visible trace of body effects, whereas the
method based on undamped modes shows strong influ-
ence from the body. For any synthesis extending beyond

Figure 6. Computed ()-factors from three different synthesis
methods: (a) the first-order modal method, assuming constant
string damping; (b) the undamped modal method plus Rayleigh’s
principle, assuming constant string damping; (c) the first-order
modal method using frequency-dependent string damping as de-
termined from measurements [1]. In each case the dashed line
shows the string damping as a function of frequency. The low-Q)
modes near the horizontal axis are “body modes”.

a few hundred Hertz the undamped-mode method would
give answers which are sufficiently wrong that the differ-
ence would almost certainly be audible (although compar-
ative listening tests have yet to be conducted).

An important consequence of “non-veering” behaviour
is illustrated in Figure 6. It was shown in Figure 1b that
veering behaviour leads to a strong increase of damping of
the “string” modes near a body resonance, whereas “non-
veering” implies a much smaller influence on damping
from body coupling. Figure 6a shows the () factors of all
modes up to 5 kHz as computed by the first-order method,
while Figure 6b shows the corresponding results for the
Rayleigh method. Except at the lowest frequencies, Fig-
ure 6a shows a very clear split between “body modes” with
low @ and “string modes” with high (). Figure 6b shows
a much wider scatter of ()-factors, as expected. Both these
plots correspond to the test case discussed above, in which
the intrinsic damping of the string was assumed to be in-
dependent of frequency. Figure 6¢ shows the first-order
results when a more accurate model of string damping is
used, as will be explained in detail in the companion paper
[1]. There is still a clear distinction between body modes
and string modes, but at the higher frequencies the dispar-
ity of damping is much lower since the effect of damping
associated with string bending stiffness makes itself felt.

Another view of the damping of “string modes” by body
coupling is given by Figure 7. By synthesising plucked
notes on the lowest string of the instrument at a vari-
ety of pitches and then combining the decay data, a rel-
atively smooth curve can be plotted of decay rate against
frequency. Specifically, frequency-domain syntheses have
been carried out for each note of the lowest string from the
open string to the 12th fret, plucked normal to the sound-
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Figure 7. Damping factor of “string modes” as a function of
frequency (a) compared to Re{Y11} (b). Pluck transients were
synthesised using the same model as for Figure 6¢, on the low-
est string, plucking normal to the soundboard, at every fret up
to the 12th and with the tension varied in ten steps so that the
fundamental pitch varied in 10 cent increments. Each transient
was analysed by a sonogram-fitting technique described in [1]
to obtain damping factors. Vertical lines in (a) indicate the fun-
damental frequencies of equal-tempered notes in the usual pitch
standard.

board, and the series was repeated for ten increments of
the string tension so that the gaps between semitones were
covered in 10 cent steps. For each transient, the decay rates
were computed using a sonogram technique described in
detail in the companion paper [1]. Arranging all the re-
sults into frequency order and then plotting over the range
up to 1kHz, where from Figure 6 it is expected that body
coupling will be significant, gives the result shown in Fig-
ure 7a. For comparison, Figure 7b shows Re{Y1:} on the
same frequency scale. This quantity would be expected to
account for the dominant energy loss from string to body,
and indeed the similarity of the two curves is striking.

Figure 7a contains information of interest to guitar mak-
ers and players. For the particular guitar on which this
synthesis model is based, the high peak near 520 Hz falls
close to an equal-tempered note in standard tuning, and
players often complain about this note “falling flat”. It can
be seen in the figure that the peak is quite narrow, and at
this frequency a semitone corresponds to a frequency jump
of about 31 Hz. (The fundamental frequencies of equal-
tempered notes for normal tuning are shown as vertical
lines in Figure 7a.) A half-semitone shift of tuning would
be enough to reduce the peak damping factor by a factor of
approximately four. This shows why guitars of apparently
similar construction may differ widely in the perception
of notes like this “falling flat”: they all possess essentially
the same resonant modes at these low frequencies, but a
small shift in frequency of this body resonance to place it
between two notes rather falling exactly on a note could
account for the difference in perceived effect.
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Figure 8. Frequency split in Hz between the pairs of “string
modes” computed by the first-order modal method (solid line);
and the undamped modal method plus Rayleigh’s principle
(dashed line).

A final aspect of non-veering is illustrated in Figure 8.
As expected, the “string modes” appear in pairs represent-
ing the two polarisations of motion. The frequency split
between each pair is of interest, both as a measure of body
coupling and as an aspect of string behaviour which may
have directly audible consequences. The splits are plot-
ted, for both modal methods of calculation. It is clear that
the frequencies computed via undamped modes are split
somewhat more widely, as the veering argument suggests.
The splits according to the first-order method are only
about 0.1 Hz over the entire frequency range. This would
suggest that, even if both polarisations of string motion
were audible, the beat periods would be of the order of
10 s or longer, and since the higher overtones of string mo-
tion do not last as long as 10 s one might predict very little
audible effect.

4.4. Use of the undamped string model

It is of some interest to see the results of synthesis using
the frequency domain approach without allowing for the
string’s intrinsic damping. If the results (26) and (27) are
used in place of (31) and (29) respectively, a result is ob-
tained which is illustrated in Figure 9. This shows the first
0.5s of the transient compared to the corresponding re-
sult when the string damping is included. It is immediately
clear that the two results are very different. There are two
reasons for this difference. One concerns the string damp-
ing directly: it has already been seen that high-frequency
string modes couple very weakly to the body and thus re-
tain low damping, so if the string has no intrinsic damp-
ing at all this can lead to very slow decay being predicted.
The second reason for difference between these methods
is that the damped-string formulae take the form of modal
sums, which can be truncated at the assumed number (65)
of string modes. However, the closed-form results (26)
and (27) do not lend themselves so easily to this, and the
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Figure 9. Comparison of synthesised plucks using the frequency
domain method with the damped string model (upper curve) and
the undamped string model (lower curve). Body acceleration in
response to a pluck amplitude of 1 N is plotted. The upper curve
is offset for clarity.
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Figure 10. Frequency spectrum of body acceleration following
a pluck, as a function of plucking angle from the normal to the
guitar soundboard.

synthesis includes string behaviour up to the Nyquist fre-
quency. Of course, if this were the only problem a filter of
some kind could be included, but since the damped-string
formulae work so well there is no obvious incentive to ex-
plore this possibility.

4.5. The response to varying pluck angle

It is now clear that the preferred synthesis method for this
kind of “laboratory” use is the frequency domain approach
using damped string behaviour — it is both accurate and
fast. (The method would be less suitable for real-time mu-
sical synthesis, even with a faster implementation, because
the FFT method has an intrinsic latency which would be
unacceptable.) This method can now be used to show the
effect on the body motion, and hence ultimately on the
sound, of the orientation of the initial pluck. Obviously,
this is a question which can only be posed in the context of
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a model including both polarisations of string motion. At
least roughly, a rotation of the plane of the initial pluck will
correlate with differences of playing technique: for exam-
ple, between apoyando and tirando finger strokes (see for
example [36]). Figure 10 shows how the spectrum of body
acceleration in the normal direction varies with pluck an-
gle, from zero (normal to the soundboard) to 90° (parallel
to the soundboard). The plot shows that the changes are
rather small until the angle reaches about 70°, but then
there are rapid and significant changes as the angle moves
towards 90°. The effects are different for different frequen-
cies (because of the influence of the modal angles 6y,), but
many of the strong frequency peaks show a drop by 20—
30dB in this range. At a few frequencies, a rise in ampli-
tude can be seen over the same range of angles. This plot
confirms something which is well known to guitarists, that
the exact way that a pluck is executed can have a very sig-
nificant influence on the sound.

5. Conclusions

A variety of different approaches have been described to
the problem of synthesising the pluck response of a gui-
tar. All methods start from the same information: string
properties and input admittance at the bridge of the gui-
tar. Synthesis can be carried out in the frequency domain,
the time domain, or via modal superposition. Within these
broad categories there are further options. A range of these
methods has been implemented, and their performance on
a particular test case has been compared. The test case was
based on the lowest note of the guitar, and aimed to syn-
thesise the response up to approximately 5 kHz. This is a
non-trivial task, for example involving some 350 degrees
of freedom in the modal methods.

Some synthesis methods were found to give unsatisfac-
tory results: time domain synthesis via the “digital waveg-
uide” approach, modal synthesis based on first solving for
the undamped system modes, and any method which does
not allow for the inherent damping of the string (although
this is very low). Two methods remain, which both gave
predictions in accurate agreement with one another: modal
synthesis using the first-order method, and frequency-
domain synthesis incorporating the effect of string damp-
ing. Of the two, frequency domain synthesis proved to be
faster by a significant factor, and this is recommended as
the method of choice.

Many of the problems besetting the unsuccessful meth-
ods revolve around the treatment of vibration damping.
In particular, post-processing the undamped modes, a
method which works well in many vibration problems,
can give very inaccurate answers for the guitar problem,
mainly because the system as a whole exhibits strongly
non-proportional damping: the inherent damping of the
string is much lower than that of the body. Modelling of
this phenomenon shows that at frequencies above a few
hundred Hertz, the coupled string/guitar system does not
show “veering” behaviour, and this allows lightly-damped
“string modes” to occur at high frequencies, even though
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the body exhibits significant modal overlap so that there is
always a body mode close enough that coupling would be
expected.

It must be emphasised, though, that the tests shown in
this paper have only compared synthesis methods with one
another. The “winning” methods give consistent answers
by very different routes, and to that extent seem to be
reliable. However, to know whether these answers are in
fact the correct ones requires comparison with experiment.
That task is taken up in a companion paper [1].
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